

Prague, Czechia 2023 21–23 Sept

SUMMT

INTRODUCTION

Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses patients who have hepatic steatosis and at least one of five cardiometabolic risk factors. The coexistence of other forms of liver disease as MASLD with viral hepatitis is also recognized. There are no accurate data neither on the prevalence of MASLD in HCV or HBV induced chronic liver disease nor on the liver disease progression due to MASLD in patients who achieved viral HCV elimination/or HBV disease control.

AIM

We evaluated the prevalence and clinical characteristics of MASLD in the large PITER HCV and HBV (HDV coinfected or not) Italian cohorts.

METHOD

Patients: The study population consisted of patients with chronic HCV or HBV (with or without HDV coinfection) consecutively enrolled in the ongoing, prospective PITER-HCV and PITER HBV/HDV cohorts (the Italian Platform for the study of Viral Hepatitis Therapy) from about 60 centers specialized in liver and infectious diseases distributed throughout Italy (1). For the purpose of the present study, patients with HIV co-infection were excluded. Potential MASLD was defined taking into account the presence of steatosis and at least one of the metabolic dysfunctions included in the New Nonalcoholic fatty Liver Disease (NAFLD) Nomenclature (2).

Statistical analysis: Patients' main characteristics were reported as the median and interquartile range (IQR) for continuous or as proportions for categorical variables. The Mann-Whitney rank-sum test and the Chi-squared test were used as appropriate. A p-value of <0.05 was considered statistically significant. Adjusted odds ratios for potential confounding variables were calculated by multiple logistic regression analyses.

HBV/HDV coinfected patients (54.8% males) and 11.619 HCV monoinfected patients (53.4% males), were included. The baseline demographic, clinical and biochemical characteristics of the study population are shown in Table 1. The median age of HBV, HDV/HDV and HCV infected patients was 59 years (IQR 47-68), 55 years (IQR 45-62) and 63 years (IQR 52-71), respectively (p<0.001). The prevalence of steatosis was 27.4%, 21.2% and 27.4% in HBV, HBV/HDV and HCV infected patients' cohort p=0.029). Cardiovascular diseases and diabetes were significantly more prevalent (p<0.001) in HCV versus HBV and HBV/HDV patients' cohort (37.9%, 25.6% and 20.2% respectively; 14.1%, 10.1% and 5.7%, respectively) whereas cirrhosis was significantly higher (p<0.001) in HBV/HDV versus HBV and HCV patients' cohort (70.2%, 23.5% and 49.7%, respectively). Current alcohol use was more frequently present in HBV versus HBD/HDV and HCV patients' cohort (22.4%, 18.2% and 15.6% respectively, p<0.001). These results were confirmed after adjusting for potential confounders (data not shown).

Prevalence of MASLD in patients' cohorts

The prevalence of MASLD was 21.2% (756/3571), 12.6% (47/372) and 22.7% (2640/11619) in the HBV, HBV/HDV and HCV cohorts, respectively (p<0.001) (**Table 1**). In the HCV cohort, the prevalence of MASLD remained 23.0% also excluding 1077 patients with genotype 3 (data not shown). In patients with liver cirrhosis, the Table 2 prevalence of MASLD was significantly higher in the HBV versus the HBV/HDV and HCV cohorts: 24.7% (207/838), 12.6% (33/261) and 20.0% (958/4787) respectively (p<0.001) (**Table 2**). In patients with F0-F3 fibrosis stage the prevalence of MASDL was MASLD significantly higher in HCV chronic infected patients compared with HBV and HBV/HDV chronic infected patients, specifically: 23.7% (1148/4854) in HCV vs 20.1% (549/2733) in HBV and 12.6% (14/111) in HBV/HDV cohorts (p<0.001) (**Table 2**).

Variables associated with MASLD

MASLD AND CHRONIC VIRAL HEPATITIS: BASELINE RESULTS FROM PATIENTS ENROLLED IN THE PITER HCV AND HBV AND HDV ITALIAN COHORTS

M.G. QUARANTA¹, L. FERRIGNO¹, M.E. TOSTI¹, L. A. KONDILI^{1,2} on behalf of PITER Collaborating Group*

¹ Center for Global Health, Istituto Superiore di Sanità (ISS), Rome, Italy ² UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy

* available at www.progettopiter.it

RESULTS

Patients' main baseline characteristics

Data from 3571 HBV monoinfected patients (62.3% males), 372

Further analysis showed that MASLD was independently associated with older age (OR 1.02, 95% CI 1.01 - 1.02), male Cirrhosi gender (OR 1.39, 95% CI 1.28 - 1.51), HCV infection (OR 1.10, 95% CI 1.00 - 1.21) and a fibrosis stage different from cirrhosis (OR 1.30, 95% CI 1.19 - 1.42) (**Table 3**).

Table 2 study

MASLD

Table 3 Age (

* Adjusted for all variable listed in table

L - Baseline characteristics of the		HBV		HBV/HDV		HCV		
populations.		(N=357	/1*) 0/	(N=3)	/2*) 0⁄	(N=116	019*) 0/	D**
age years (IOR)		59 (47	- 68)	55 (45	- 62)	63 (52	/0 - 71)	<0.001***
	Male	2223	62 3	204	54.8	6199	53.4	<0.001
	Female	1348	37.8	168	45.2	5420	46.7	
	Underweight-Normal	1260	45.9	131	50.6	5724	49.3	0.005
	Overweight-Obese	1488	54.2	128	49.4	5894	50.7	
use	Never	2159	65.7	215	69.8	7548	66.6	<0.001
	Current	735	22.4	56	18.2	1764	15.6	
	Past	394	12.0	37	12.0	2022	17.8	
y of birth	Italian natives	2744	76.8	234	62.9	10058	95.6	<0.001
	Non-Italian natives	827	23.2	138	37.1	464	4.4	
is	Yes	838	23.5	261	70.2	4787	49.7	< 0.001
	No	2733	76.5	111	29.8	4854	50.3	
is with complications	Yes	348	53.4	169	71.0	2984	62.3	<0.001
	No	304	46.6	69	29.0	1803	37.7	
iffness Measurement	<u>></u> 20 kPa	57	3.0	33	17.7	1399	17.3	< 0.001
	< 20 kPa	1827	97.0	154	82.4	6700	82.7	
es	Yes	359	10.1	21	5.7	1633	14.1	< 0.001
	No	3212	90.0	351	94.4	9986	86.0	
ascular disease	Yes	915	25.6	75	20.2	4400	37.9	<0.001
	No	2656	74.4	297	79.8	7219	62.1	
is	Yes	980	27.4	79	21.2	3189	27.4	0.029
	No	2591	72.6	293	78.8	8430	72.6	
	Yes	756	21.2	47	12.6	2640	22.7	<0.001
	No	2815	78.8	325	87.4	8979	77.3	
is Interferon use	Yes	560	15.7	122	32.8	4314	37.1	< 0.001
	No	3011	84.3	250	67.2	7305	62.9	
of previous HCC	Yes	96	2.8	32	8.8	512	4.4	<0.001
	No	3378	97.2	332	91.2	11107	95.6	
	A	744	88.8	219	83.9	3520	84.3	0.002
	В	92	11.0	36	13.8	599	14.3	
	С	2	0.2	6	2.3	58	1.4	

2 – Prevalence of MASLD by cirrhosis.		HBV (N=3571*)		HBV/HDV (N=372*)		HCV (N=11619*)		
		Ν.	%	Ν.	%	Ν.	%	P**
in F4 cirrhosis	Yes	207	24.7	33	12.6	958	20.0	< 0.001
	No	631	75.3	228	87.4	3829	80.0	
in FO - F3 fibrosis stage	Yes	549	20.1	14	12.6	1148	23.7	< 0.001
	No	2184	79.9	97	87.4	3706	76.3	

For some variables inconsistencies are due to missing values

** p value Chi-square test *** p value Mann–Whitney rank-sum test

– Variables associates with MASLD.	Adjusted OR * (95% CI)
ars)	1.02 (1.01 - 1.02)
Female	1.00
Male	1.39 (1.28 - 1.51)
s Yes	1.00
Νο	1.30 (1.19 - 1.42)
is B mono + Delta	1.00
HCV	1.10 (1.00 - 1.21)

CONCLUSIONS

Different prevalence of MASLD was observed in patients with HBV, HBV/HDV and HCV, chronic infection and in those with different stages of liver disease due to viral hepatitis. Prospective evaluations are necessary to evaluate if MASLD is a cofactor or bystander on HBV, HBV/HDV and HCV disease progression.

REFERENCES

- 1. Kondili LA, Vella S; PITER Collaborating Group. PITER: An ongoing nationwide study on the real-life impact of direct acting antiviral based treatment for chronic hepatitis C in Italy. Dig Liver Dis. 2015;47:741-3. doi: 10.1016/j.dld.2015.05.022.
- 2. Rinella ME, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023. doi: 10.1016/j.jhep.2023.06.003.

ACKNOWLEDGEMENTS

The authors wish to thank all PITER collaborating group and all participating centers, investigators and research staff (available in www progettopiter.it) who are involved in the study on a voluntary basis, for their time and effort. We also thank Giampaolo La Terza (Medisoft Informatic Services) for Database maintenance and implementation. We additionally acknowledge Federica Magnani, Rosangela Duranti, Erika Olivieri, Alessandra Mattei and Stefania Donnini for secretarial and administrative assistance.

CONTACT INFORMATION

Prof. Loreta Kondili. Center for Global Health, Istituto Superiore di Sanità, Rome, Italy. Email: loreta.kondili@iss.it