

De-novo occurrence of portal vein thrombosis in patients with HCV-related cirrhosis after sustained virological response: medium to long term observations from the ongoing PITER cohort

L.A. Kondili¹, M.G. Quaranta¹, L. Ferrigno¹, C. Coppola², M. Monti³, R. Filomia⁴, G. Brancaccio⁵, M.R. Brunetto⁶, E. Biliotti⁷, D. Ieluzzi⁸, A. Iannone⁹, S. Madonia¹⁰, X. Tata¹, L. Cavalletto⁵, V. Cossiga¹¹, S. Amodeo¹², V. Calvaruso¹², E. Rosselli del Turco¹³, M.G. Rumi¹⁴, M. Pompili¹⁵, A. Ciancio¹⁶, L. Brescini¹⁷, F.P. Russo⁵

¹Istituto Superiore di Sanità, Rome; ²Gragnano Hospital, Naples; ³University of Florence; ⁴University Hospital of Messina; ⁵University of Padua; ⁶University Hospital of Pisa; ⁷Policlinico Umberto I, Sapienza University of Rome; ⁸University Hospital of Verona; ⁹University of Bari; ¹⁰Villa Sofia-Cervello Hospital, Palermo; ¹¹Federico II University, Naples; ¹²University of Palermo; ¹³Alma Mater Studiorum Bologna ¹⁴San Giuseppe Hospital, Milano; ¹⁵Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome; ¹⁶Città della Salute e della Scienza of Turin, University Hospital, Turin; ¹⁷Marche Polytechnic University, Ancona

BACKGROUND & AIM

Achievement of sustained virological response (SVR) by direct-acting antiviral therapy (DAAs) in patients with cirrhosis (both compensated and decompensated) is associated with reduced risks of decompensation, liver-related mortality and hepatocellular carcinoma (HCC). In addition, SVR ameliorates portal hypertension, and may reverse hyper-coagulability driven by cirrhosis. However, an unexpected incidence of portal vein thrombosis (PVT) immediately after antiviral therapy has recently been reported.

Therefore, based on the prospective multicenter design of the ongoing PITER cohort, representative of HCV patients in care in Italy, we aimed to 1) determine the incidence of PVT in patients with HCV cirrhosis who achieved SVR after DAAs vs those who didn't and vs untreated patients; 2) investigate predictive factors for development of PVT in these patients.

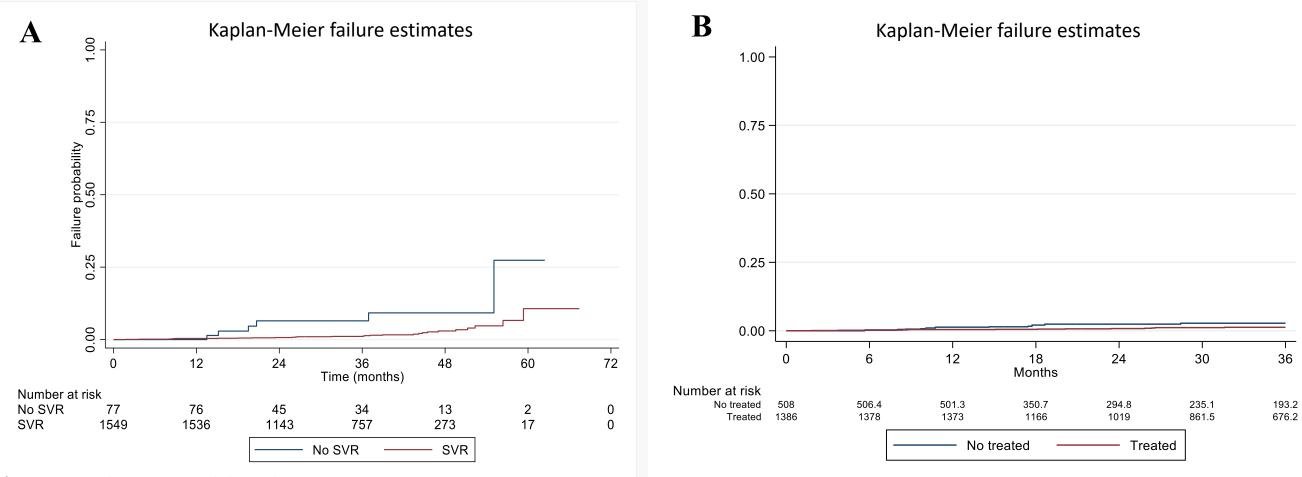
METHODS

Study population: All consecutively enrolled patients in the PITER cohort diagnosed with liver cirrhosis independently by DAA therapy were evaluated. Patients with a previous diagnosis of PVT, previous liver transplantation or on the waiting list, were excluded. Neoplastic PVT were excluded from this analysis. IFN-free DAA-treated patients with at least a 12-weeks F.U. after the end of treatment were included. For treated patients, follow-up started when DAA therapy was finished. Untreated patients with at least 1 year F.U. after enrolment were included.

Statistical Analysis: The Mann-Whitney U test was used for continuous variables to assess differences between distribution, and the Chi-squared test was used to compare proportions. *De-novo* PVT occurrences were examined using Kaplan–Meier survival analyses and the log-rank test. Cox proportional hazard model was used to evaluate predictive factors independently associated with *de-novo* PVT adopting a forward stepwise selection, adding terms with $p \le 0.1$ and removing those with $p \ge 0.2$. A propensity score was calculated to take into account the imbalance between the untreated group and the successfully treated group. A p value <0.05 was considered statistically significant. Statistical analysis was performed with STATA version 16.1 (StataCorp, College Station, TX, USA).

RESULTS

PVT de-novo occurrence in DAA treated and untreated patients


Of overall 1626 consecutive patients with liver cirrhosis who undergone the antiviral therapy (median follow-up time was 35.6 months after EOT; IQR 23.3 - 44.3 months), 34 (2.1%) developed non-neoplastic PVT following DAA treatment. The two year PVT cumulative incidence rates were 0.7% for SVR patients and 6.4% for those who failed to achieve the SVR (p<0.001) (**Figure 1A**).

A total of 508 untreated patients with at least 1-year FU after enrolment and 1386 patients who achieved the SVR with the availability of values for each pre-treatment variables considered, were compared for PVT development. All the variables analyzed were well matched between the two groups after Inverse Probability Weighting (IPW) (Weighted SMD < 0.1) (data not shown).

Considering the EOT as the starting time point for treated patients and the enrollment date for untreated patients, in the first 36 months, there are 12 *de-novo* PVT diagnoses in the untreated patients, with a weighted incidence rate of 0.09% (CI95%: 0.05-0.18) and 15 new diagnoses in the successfully treated patients with an incidence rate of 0.04% (CI 95%: 0.02-0.06). Treated patients with SVR report a weighted HR=0.41 (CI 95% 0.18-0.93) p=0.033, which indicates that in the first 36 months following viral eradication, the PVT development risk is halved compared to the risk observed in untreated patients. The two year PVT cumulative incidence rates were 2.4% for the untreated patients and 0.8% in treated patients with SVR (Figure 1B).

		No thrombosis (N=1521*)		Thrombosis occurrence (N=28*)			TOTAL (N=1549*)	
Epidemiological features Age (years)		Median (IQR) 65 (56 - 72)		Median (IQR) 67 (58 - 71)		p**	Median (IQR) 65 (56 - 72)	
						0.616		
		N.	%	N.	%	p***	N.	%
Sex	Male	842	55.4	13	46.4	0.346	855	55.2
	Female	679	44.6	15	53.6		694	44.8
вмі	Underweight-Normal	661	43.5	11	39.3	0.329	672	43.4
	Qxerweight.	634	41.7	10	35.7		644	41.6
	Obese	226	14.9	7	25.0		233	15.0
Alcohol use	Never	1023	68.1	22	78.6	0.369	1045	68.3
	Current	153	10.2	3	10.7		156	10.2
	Past	326	21.7	3	10.7		329	21.5
HCV-genotype	1a	171	11.2	1	3.6	0.507	172	11.1
	1b	911	58.9	18	64.3		929	60.0
	2	219	14.4	6	21.4		225	14.5
	3	128	8.4	1	3.6		129	8.3
	Other,	92	6.1	2	7.1		94	6.1
HIV+	Yes	55	3.6	1	3.6	0.990	56	3.6
	No	1466	96.4	27	96.4		1493	96.4
HBV Infection	Anti-HBc+/HBsAg+	16	1.1	0	0.0	0.675	16	1.0
	Anti-HBc+/HBsAg-	294	19.3	4	14.3		298	19.2
	No	1211	79.6	24	85.7		1235	79.7
Metabolic syndrome	Yes	207	13.6	2	7.1	0.321	209	13.5
	No	1314	86.4	26	92.9		1340	86.5
History of HCC	Yes	120	7.9	3	10.7	0.584	123	7.9
	No	1401	92.1	25	89.3		1426	92.1
Previous	Yes	725	47.7	13	46.4	0.897	738	47.6
nterferon use	No	796	52.3	15	53.6		811	52.4
Diabetes.	Yes	345	22.7	9	32.1	0.237	354	22.9
	No	1176	77.3	19	67.9		1195	77.1
Clinical features		N.	%	N.	%	p***	Ν.	%
Platelets count	<u><</u> 150,000/μL	1075	71.3	27	96.4	0.003	1102	71.8
	> 150,000/µL	432	28.7	1	3.6		433	28.2
Albumin (g/dL)	<u><</u> 3.5	346	24.1	18	64.3	< 0.001	364	24.9
	> 3.5	1088	75.9	10	35.7		1098	75.1
Bilirubin (mg/dL)	<u>></u> 1.1	460	31.3	20	71.4	< 0.001	480	32.0
	< 1.1	1012	68.8	8	28.6		1020	68.0
INR	<u>></u> 1.1	737	51.4	20	71.4	0.036	757	51.8
	< 1.1	696	48.6	8	28.6		704	48.2
iver Stiffness	<u>></u> 20	586	48.8	10	66.7	0.169	596	49.0
Measurement (<u>kPa)</u> FIB4	< 20	615	51.2	5	33.3		620	51.0
	> 3.25	1025	68.5	25	89.3	0.019	1050	68.9
	<u><</u> 3.25	471	31.5	3	10.7		474	31.1
Child-Pugh Class	Α	1305	85.8	17	60.7	< 0.001	1322	85.3
	В	216	14.2	11	39.3		227	14.7
Previous	Yes	159	10.5	11	39.3	< 0.001	170	11.0
decompensations	No	1362	89.6	17	60.7		1379	89.0

Table 1 - Baseline characteristics ofcirrhotic DAA successfully treatedpatients by PVT occurrence.

* No SVR = Relapser or Breakthrough

Figure 1. (A) PVT cumulative incidence rates in cirrhotic treated patients by SVR; (B) PVT cumulative incidence rates in cirrhotic successfully treated *vs* untreated patients.

Baseline predictive factors of *de-novo* PVT occurrence in patients who achieved an SVR

Of 1549 SVR patients (median age 65 years, 85% Child A, 15% Child B), 28 (1.8%) experienced non-neoplastic PVT (median time of PVT occurrence was 33.8 months after EOT; IQR 17-45 months). Of them, 12 reported HCC (3 previous and 9 after achieving the SVR). Baseline characteristics of patients who achieved the SVR are shown in **Table 1**. Compared to patients who didn't develop PVT, patients with *de-novo* PVT were more likely Child B (39.3% vs. 14.2%, p<0.001), had more frequent clinical

[•]For some variables inconsistencies are due to missing values

*p value Mann-Whitney rank-sum

**p value Chi-square test

Pre-treatment factors	Crude HR	95% CI	Adjusted HR*	95% CI
Age (increasing years)	1.02	0.98 - 1.06	1.02	0.97 - 1.06
Gender (ref. male)	1.39	0.66 - 2.93	1.38	0.64 - 2.97
BMI: overweight (ref. under-normalweight)	0.97	0.41 - 2.29		
obese (ref. under-normalweight)	2.33	0.90 - 6.04	2.18	0.89 - 5.32
Alcohol use: current (ref. never)	1.29	0.38 - 4.33		
past (ref. never)	0.44	0.13 - 1.46		
HCV-genotype (3 vs others)	0.43	0.06 - 3.15		
HCC	1.12	0.27 - 4.73		
Previous Interferon treatment	0.81	0.38 - 1.71		
Platelets (ref. >120,000/µL)	9.48	1.29 - 69.78	3.56	1.03 - 12.33
Albumin (ref. > 3.5 g/dL)	5.75	2.65 - 12.47	2.66	1.15 - 6.15
Bilirubin (ref. > 1.1 mg/dL)	5.32	2.34 - 12.09	2.70	1.10 - 6.65
INR (ref. < 1.1)	2.44	1.07 - 5.55		
Previous decompensation	5.00	2.33 - 10.70	2.17	0.96 - 4.86
Diabetes	1.64	0.64 - 3.73		

Variables Table 2. associated with *de*novo PVT occurrence cirrhotic DAA in successfully treated patients. Univariate multivariate and analysis.

* Cox forward stepwise selection

CONCLUSION

The risk of *de-novo* non-neoplastic PVT in patients with cirrhosis who achieved the SVR is low and mainly related to the liver disease severity. PVT development following the SVR may identify patients with higher decompensation and mortality risks.

ACKNOWLEDGEMENTS

Authors wish to thank PITER collaborating group and all the clinical centers (available at <u>www.progettopiter.it</u>) which are involved in the study on a voluntary basis and Giampaolo La Terza (Medisoft Informatic Services) for Database maintainance and implementation

features of more severe liver disease. ALT, AST, creatinine, values were similarly distributed in both groups (data not shown).

Patients with *de-novo* non-neoplastic PVT had higher risks of decompensation (39.3% vs. 4.9%; p<0.001) and liver-related death (13% vs. 2%, p<0.001).

Pre-treatment variables independently associated with *de-novo* PVT occurrence in patients who achieved the SVR were platelets count lower than 120.000/ μ L (aHR: 3.56, CI 95%: 1.03 - 12.33), albumin level lower than 3.5 g/dl (aHR: 2.66, CI 95%: 1.15 - 6.15) and bilirubin level lower than 1.1 mg/dL (aHR: 2.70, CI 95%:1.10 - 6.65) (**Table 2**).

REFERENCES LA Kondili, S Vella and PITER Collaborating Group. *Digestive and Liver Disease*. 2015; 47:741-743

• Zanetto A, Simioni P, Russo FP. J Hepatol. 2021; 74:967-968

DISCLOSURE

Loreta A. Kondili, MD PhD, Istituto Superiore di Sanità, Roma

La sottoscritta dichiara di non aver avuto negli ultimi 12 mesi conflitto d'interesse in relazione a questa presentazione e che la presentazione non contiene discussione di farmaci in studio o ad uso off-label